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Abstract This study on reef placement involves two aspects: (1) the development of a bioenergetics model for red
snapper, Lutjanus campechanus (Poey), in Gulf of Mexico waters off the coast of Alabama, where significant
numbers of artificial reefs are thought to exist, and (2) a fuzzy rough set model by which parameters determined
from the bioenergetics model can provide a decision tool for optimally spacing artificial reefs during deployment.
The bioenergetics and consumption rates of L. campechanus by age class foraging on artificial reefs in the Gulf of
Mexico off the coast of Alabama provided input into the fuzzy rule-based model. After conducting multiple
simulations, highest certainty in optimal reef spacing was achieved for reef distances between 0.50 and 0.95 km
such that no more than two fit within a 1-km2 area. Results can inform fisheries managers about placement of
artificial reefs to affect the health and survival of reef-associated species.
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Introduction

Bioenergetics models require two basic data sets: (1)
estimates of P-value and consumption (g) in the
bioenergetics budget equation as functions of temper-
ature and body size; and (2) site-specific data, such as
ambient water temperature, growth estimates of the
species and diet (Kitchell et al. 1977). Thus, bioener-
getics provides a theoretical framework for relating
growth rates and feeding rates of an organism to
environmental conditions, and provides some insight
into causal relationships among these variables (Allen
& Wootton 1982). Population consumption is esti-
mated by knowing the diet, respiration rate and
growth rate (Kitchell et al. 1977; Ney 1990; Hanson
et al. 1997; Bajer et al. 2004a) of an average individual
coupled with estimates of population size (Hayward &
Margraf 1987; Hill & Magnuson 1990). A bioenerget-
ics model can determine whether prey production
(Jones et al. 1993; Rand et al. 1995; Kershner et al.

1999; Yamamura 2004) is sufficient to account for
observed growth rates, or it can estimate how much
food is consumed to result in those growth rates, hence
a greater understanding of the ecology of the species in
the habitat in which it lives (Kitchell et al. 1977).

Many bioenergetics studies have used the Wisconsin
bioenergetics model (also known as Fish Bioenergetics
3.0; and hereafter as Bioen95), which has been used for
a wide variety of fishes (Kitchell et al. 1977; Ney 1993).
This model uses an energetics-based approach focused
upon the processes that regulate growth in individual
fishes (Kitchell et al.1977). Bioen95 assembles individ-
uals into age and size population classifications,
separates natural and fishing mortality rates, and
specifies the trophic ontogeny of predator–prey inter-
actions. The software is accessible, as it employs data
most frequently collected by biologists, including
habitat, thermal history, size at age, growth curves,
stomach contents, size at sexual maturity and mortality
rates. Yet, in an ecological investigation, perfect
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knowledge is rarely, if ever, available because natural
systems do not conform to crisp definitions (Mackin-
son et al. 1999).

The use of crisp (not fuzzy) sets requires the expert
to establish sustainability thresholds for attributes,
measure the attributes and determine whether mea-
sured attributes attain or fall short of the thresholds.
This approach assumes that the expert can make a
sharp, unambiguous distinction that is incompatible
with the numerous uncertainties in ecosystem assess-
ments. A fuzzy logic approach overcomes the conven-
tional approach according to Prato (2005). Compared
with conventional knowledge-based systems, fuzzy set
theory offers better representation and processing of
imprecise data, and of vague knowledge in the form of
linguistic rules (Salski 1992). Such a fuzzy rule-based
model is characterised by data richness and complex-
ity, thrives in a data-poor environment, is adaptive
such that better approximations are possible with more
data, requires relatively few rules to describe the data,
and can provide patches across traditional curve-based
distributions (Mackinson et al.1999). Fuzzy logic has a
rigorous mathematical foundation shown not to con-
tradict but to encompass probability theory (Kosko
1990), while dealing with uncertainty where ambiguous
terms are present. (Articles in Zadeh 1979, 1981 and
1983 illustrate the use of fuzzy sets.)

Given the high uncertainty and imprecise environ-
ment in fisheries science and management, it has been
suggested that fishery statistical parameters do not
follow deterministic rules but fluctuate around a fuzzy
value (May et al. 1978). More recently, Koutrouman-
idis et al. (2006) applied fuzzy expected intervals to
fishery landings data. As an extension of this work,
Sylaios et al. (2010) considered the different degrees of
membership within a cluster providing a series of five
rules related to landings and fish production.

In line with this direction towards fuzzy rule-based
models, a rough set theory model (Pawlak 1982;
Mrozek 1985; Arciszewski & Ziarko 1986; Fibak et al.
1986; Mrozek 1987; Grzymala-Busse 1988; deKorvin
& Shipley 1993) using fuzzy sets was developed to
investigate artificial reef placement as a function of fish
consumption. In the natural environment, many reef-
associated fishes forage away from reefs (Bohnsack
1989). As such, distances between shelter and foraging
locations can be important determinants of foraging
success.

Rules were developed according to: (1) consumption
estimates generated by a bioenergetics model for
Lutjanus campechanus (Poey) describing food require-
ments based upon empirically determined growth
rates; and (2) artificial reef data predicted from

simulating the effect of foraging specifically related to
food consumption of L. campechanus on the reefs. The
fuzzy set model considers distances from maximum to
minimum spacing and determines a strength of belief
in the certainty or possibility of the hypothesised rules
for reef placement. Based upon the strength of belief in
a rule, the artificial reef placement location can be
accepted or rejected as being conducive to consump-
tion at the reef and foraging behaviour of the fish,
specifically L. campechanus.

Methods

Bioenergetics model for Lutjanus campechanus

Although numerous species have bioenergetics models,
a model for L. campechanus has not previously been
developed. To model a new species, a set of parameters
must be developed. These can be derived from
published reports, estimated from specifically designed
field or laboratory studies, or borrowed from closely
related species. Although species borrowing data has
met with some criticism (Ney 1990, 1993), the positive
viewpoint is that using parameters from closely related
species or those with similar morphologies and life-
history attributes provides a reasonable modelling
assumption until actual ecological species-specific
parameters can be derived. As such, parameter ranges
for other warm water omnivores that consume some
indigestible prey available from the Bioen95 manual
(decapod crustaceans in this instance) were considered
suitable for use in the L. campechanus model in the
absence of L. campechanus -specific information. Tem-
peratures in the model were based upon observations
made during numerous sampling efforts for L. camp-
echanus conducted between 1996 and 2002 on Ala-
bama artificial reefs (Watterson et al.1998; Patterson
1999; Patterson et al. 2001a, b; Patterson & Cowan
2003; Jackson et al. 2007). The allometric mass func-
tion intercept was also adjusted until juvenile L. camp-
echanus consumption was between 2% and 4% and
adult consumption was between 1% and 3%. Further-
more, as all L. campechanus in the model were larger
than 10 g the same parameters were used for every age
class.

For this study, an assumption was made that
approximately 1500 L. campechanus would represent
a population on a single artificial reef (reef volumes
1.8–3.5 m3). The bioenergetics model was then ad-
justed to formulate equation-specific input variables
for L. campechanus. These variables were extracted
from empirical data in Patterson et al. (2001a) and
Jackson et al. (2007),which included total length (TL),

J. B. SHIPLEY & J. H. COWAN JR2

� 2010 Blackwell Publishing Ltd.



age classifications, instantaneous growth in weight, TL
to weight comparisons, weight lost due to spawning
and total mortality rate.
Although natural mortality rates were assumed

constant for all age classes (0.10), fishing mortality
affects only those age classes where the fish is large
enough to be legal for capture (>406 mm TL). Fishing
mortality (F) was calculated using two different year
classes from data in Patterson et al. (2001a). The
catch-at-age between ages 5 and 11 was used to
estimate F at 0.43 per year, which is close to the
F-estimate (0.46 per year) for the same age classes
derived from the most recent stock assessment for
L. campechanus in the eastern Gulf (SEDAR 7, 2005).
Therefore, total mortality rate for fish over the legal
limit of 406 mm (‡3 age class) was assumed to be 0.53
per year.
To eliminate bias, L. campechanus numbers were

adjusted to include only non-tournament catches.
Next, ages were assigned based upon data from
Patterson et al. (2001a), and the von Bertalanffy
growth function (Patterson et al. 2001a) was fitted to
the revised catch numbers based upon TL (mm) and
age. Age class 1 was excluded from the calculations of
biomass because these fish are not fully recruited to the
offshore artificial reefs until age 2. Finally, age-class
frequencies were determined; all information on size
and age is summarised in Table 1.
Total length and weight (WT) were calculated for

each age class based on non-tournament catch data
using equations from Patterson et al. (2001a):

TL ¼ 1181�ð1� e�0:120ðtþ0:652ÞÞ ð1Þ

WT ¼ ð4:68� 10�9ÞTL3:17; ð2Þ

where 2 £ t £ 34. The calculated weight for an
individual fish in each age class was multiplied by the
number of fish in the cohort to equal the mass of the
starting population (Table 2), assuming no sexual
dimorphism in size and growth rate (Patterson et al.
2001a; Fischer 2007).

Lutjanus campechanus reaches maturity at 208–
309 mm TL (Patterson et al. 2001a; Woods 2003).
Thus, half of the fish in age class 2 and all the fish in
the subsequent age classes were considered sexually
mature and subject to gamete shedding during spawn-
ing (Woods 2003). While L. campechanus spawns from
June to August (Render 1995), the Bioen95 software
only allows for 1 day of spawning as it relies on a
stepwise progression of time to represent maturity to
death of the species within the ecosystem. The model
compresses the environment such that all gametes that
are lost during the summer months must therefore be
represented during the single day selected. Day 201
(July 20) was chosen to represent this single day of
spawning based upon the reported mid-July peak in
spawning by L. campechanus (Woods 2003). As
females lose more weight during gamete shedding than
males, only the female weight shedding was taken into
account. Weight lost due to spawning was calculated
by multiplying the total estimated annual fecundity for

Table 1. Size class and age group frequencies for Lutjanus campechanus bioenergetics input

Size (mm)

Number of

fish sampled

Number of

tournament

fish excluded

TL (mm)

frequencies Age

Age-class

frequency

200–250 20 0.0114 1 0.0114

250–300 65 0.0370 2 0.1367

300–350 175 0.0997

350–400 145 0.0823 3 0.2023

400–450 210 0.1197

450–500 250 10 0.1637 4 0.2967

500–550 200 5 0.1330 5 0.2319

550–600 160 15 0.0989

600–650 120 20 0.0682 6 0.0921

650–700 60 25 0.0239

700–750 45 25 0.0136 7 0.0136

750–800 65 50 0.0102 8 0.0102

800–850 55 45 0.0068 9 0.0068

850–900 40 35 0.0034 ‡10 0.0143

900–950 25 20 0.0034

950–1000 10 9 0.0007

N = 1466
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each age class by the estimated weight of an individual
egg (25 lg; Houde 1989) and by 0.50 to represent only
the females in the age classes. Production of repro-
ductive tissue occurs during normal growth and loss
occurs during spawning. If a bioenergetic model run
includes spawning data for mature fish, a user-defined
proportion of fish mass will be lost on the selected
spawning day. While separate runs can be done for the
males and females, it is generally sufficient to estimate
the average proportion of gonad production lost for
both sexes combined. Variation in water temperature
in the Gulf of Mexico, where the artificial reefs systems
are located, was determined from past research (Strel-
check 2001; McCawley 2003; McCawley & Cowan
2007) to represent changes in temperature across
seasons. Seasonal water temperature, as well as a
minimum temperature below which L. campechanus
cannot survive, was used in the model. For L. camp-
echanus on the Alabama artificial reefs, the minimum
temperature was set at 14 �C.

Finally, diet data were analysed based on McCawley
(2003) and McCawley and Cowan (2007), which
identified seven main categories of prey species in
Alabama coastal waters. Fish species (19.5%), crab

species (20.3%), pelagic zooplankton (8.0%) and adult
mantis shrimp (12.6%) were the principal components
of the L. campechanus diet (McCawley 2003; McCaw-
ley & Cowan 2007) and included in this study.

Using the taxonomic breakdown of stomach con-
tents from 300 to 499 mm FL L. campechanus col-
lected on Alabama artificial reefs by season [presented
in table 3 by McCawley and Cowan (2007)], the
dietary composition for juvenile and adult L. camp-
echanus was determined by season (Table 3).

For this study, calorific density of the prey items
upon which L. campechanus feed was calculated from
appendix 2 in McCawley and Cowan (2007). While
McCawley and Cowan (2007) presented both the
values that they determined using bomb calorimetry
as well as data from the literature, this model used
average calorific density for each prey group based
only upon the calorimetric data (Table 4).

Bomb calorimetry studies were also used to deter-
mine how much of each prey item could be digested by
L. campechanus (McCawley & Cowan 2007). Hard-
shelled prey items, such as crab, cannot be digested
easily, unlike other prey items with small bones or
surface area. As all of the mass of many prey items
cannot be digested by L. campechanus, specific pro-
portions of the prey were assumed to be indigestible
and the percentage was estimated from presence of
bone structures or hard shell (Table 5).

Each individual cohort file representing different age
classes was run in Bioen95 for a total of 365 days.
Predicted values (i.e. realised daily consumption as a
fraction of Cmax) were calculated from the pre-defined
start and final weights (Table 6). Additional details
about the L. campechanus, bioenergetics model can be
found in Shipley (2008).

Lutjanus campechanus ecosystem fuzzy rule-based
model

The main idea behind the concept of a fuzzy set is
Zadeh�s (1965) generalisation of the concept of the
characteristic function of a set which he renamed
membership function. When a fuzzy subset A of a set X

Table 2. Total length and weight calculated for each Lutjanus

campechanus (Poey) age class

Age

Total length

(mm)

Weight

(kg)

1 212.38 0.1115

2 321.91 0.4166

3 419.05 0.9612

4 505.21 1.7388

5 581.63 2.7175

6 649.41 3.8542

7 709.52 5.1027

8 762.83 6.4201

9 810.12 7.7687

‡10 932.17 12.1212

Values for ‡10 age class were calculated from averaging the calcu-

lated total lengths from age classes 10–15 and using that to calculated

weight.

Table 3. Diet proportions of major prey categories for juvenile and adult snapper accounting for seasonal variation

Day of simulation

Fish species Crab species Pelagic zooplankton Mantis shrimp

Juvenile Adult Juvenile Adult Juvenile Adult Juvenile Adult

1 0.23 0.20 0.20 0.30 0.25 0.15 0.32 0.35

60 0.32 0.28 0.20 0.25 0.45 0.21 0.03 0.26

152 0.27 0.25 0.38 0.40 0.15 0.09 0.20 0.26

244 0.28 0.29 0.29 0.35 0.28 0.06 0.15 0.30

365 0.23 0.20 0.20 0.30 0.25 0.15 0.32 0.35
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is a function of X into [0,1] and set X is finite, say
X = {x1, x2,…xn}, then a fuzzy set A can be written as
A ¼

Pn
i¼1 ai=xi, where ai represents the belief that the

value of A is xi and xi may be expressed in qualitative
terms. A is sometimes called the membership function
such that ai is the belief that xi belongs to A. If A is a
standard (not fuzzy) subset of X, say
A ¼ fxi1; xi2; . . . xikg, then A can be represented as
A ¼

Pk
P¼1 aiP=xiP , where aiP ¼ 1. This states that the

belief that xiP belongs to A equals one. A fuzzy set,
therefore, is a generalisation of a standard set since ai
does not have to be equal to one; 0 � ai � 1 (Jain 1977;
Dubois & Prade 1979).

If A and B are two fuzzy sets, the operations �union�,
�intersection� and �complement� can be defined as:

If A ¼
Xn

i¼1

ai

xi
and B ¼

Xn

i¼1

bi

xi
;

then A _ B ¼
Xn

i¼1

ðai _ biÞ
xi

¼
Xn

i¼1

Maxfai; big
xi

ð3Þ

A ^ B ¼
Xn

i¼1

ðai ^ biÞ
xi

¼
Xn

i¼1

Minfai ; big
xi

ð4Þ

and A0 ¼
Xn

i¼1

ð1� aiÞ
xi

: ð5Þ

For a general discussion of the fuzzy logic concepts
above, see Kaufmann and Gupta (1985), Klir and
Folger (1988) and Zadeh (1965, 1975).

Extension principles (see Dubois & Prade 1980 and
Zebda 1984) for fuzzy sets consider ƒ as a function
from X into Y, with Y as any set and A as above, such
that ƒ can be extended to fuzzy subsets of X by:

f ðAÞ ¼
X

y

uf ðAÞðyÞ
y

; ð6Þ

where uf ðAÞðyÞ ¼Max AðxÞ; xef�1ðyÞ

Thus, ƒ(A) is a fuzzy subset of Y. In particular, if ƒ is
a mapping from a Cartesian product such as X · Y to
any set, Z, then ƒ can be extended to objects of the
form (A,B) where A and B are fuzzy subsets of X and Y
by:

f ðA;BÞ ¼
X

uf ðA;BÞðzÞ=z; ð7Þ

where uf ðA;BÞðzÞ¼MaxMin fAðxÞ; BðxÞg; ðx;yÞef�1ðzÞ.

Table 4. Mean caloric density values for the principal prey items of

Lutjanus campechanus (Poey) collected on Alabama artificial reefs

(McCawley & Cowan 2007)

Caloric density

(cal g)1) dry wt

Fish species 4947.49

Crab species 3138.45

Pelagic zooplankton 3511.23

Adult mantis shrimp 3894.01

Table 5. Percent of each prey item that is considered indigestible for

Lutjanus campechanus (Poey)

Prey

items

Percent

indigestible

Fish 20

Crab 40

Pelagic zooplankton 12

Mantis shrimp 15

Table 6. Initial and final parameter estimates from a Bioen95 model for Lutjanus campechanus (Poey) ages classes on a single artificial reef after

a single year model run

Age

Start

weight* (g)

Final

weight* (g)

Run

P-value

Initial

population*

Final

population

% spawned

on day 201*

Consumption

(g)

2 416.6 961.2 0.8691 205 184 1.06 4253.9

3 961.2 1738.8 0.7316 304 155 5.54 5934.4

4 1738.8 2717.5 0.7306 445 227 6.78 8581.3

5 2717.5 3854.2 0.7299 348 178 7.75 11 403.1

6 3854.2 5102.7 0.7499 138 70 11.93 14 677.3

7 5102.7 6420.1 0.7265 20 10 8.76 17 111.5

8 6420.1 7768.7 0.7236 15 7 8.91 19 836.7

9 7768.7 12 121.2 0.9292 10 5 8.73 32 296.4

10+ 12 121.2 15 161.1 0.7856 22 11 5.59 34 628.6

*Input values for each age class.
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Rough sets allow inference of knowledge by extrac-
tion of certain and possible rules and a measurement of
how the values of attributes determine an action
(Pawlak 1982, 1983, 1985; Grzymala-Busse 1988).
Fuzzy rough set notation transitions the basic rough
set theory as defined below (deKorvin et al. 1992,
1994; Shipley & deKorvin 1995).

A fuzzy subset A of U is defined by a characteristic
function lA:U fi [0,1]. The notation Sai/xi (0 £
ai £ 1) denotes a fuzzy subset whose characteristic
function at xi is ai. If A and B are fuzzy subsets, union,
intersection and complement are defined by Min
{lA(x),lB(x)}, Max{lA(x),lB(x)} and 1 ) lA(x),
respectively. The implication A fi B is defined by the
corresponding characteristic function Max{1 ) A(x),
B(x)} (see, for example, Zadeh 1965, 1968, 1973).

Two functions are defined as pairs of fuzzy sets that
will be the input into the rule-based decision.

IðA � BÞ ¼ inf
x

Maxf1� A(xÞ;BðxÞg ð8Þ

JðA#BÞ ¼Max Min
x

fAðxÞ; BðxÞg; ð9Þ

where A and B denote fuzzy subsets of the same uni-
verse. The function I(AB) measures the degree to which
A is included in B and J(A#B) measures the degree to
which A intersects B. If A and B are crisp (non-fuzzy)
sets it is easy to establish that I(AB) = 1 if and only if
AB; otherwise it is zero. Also, in the case of crisp sets
J(A#B) = 1 if and only if A\B „ B; otherwise it is
zero. The operators I and J yield two sets of rules: the
certain rules and the possible rules. The highest level of
belief in the certain rules and the highest plausible
belief of the possible rules is based upon selection of
the threshold of acceptance, a.

The rule structure considered for artificial reef
placement was of the form: �If percentage of maximum
consumption at the reef is {High, Low} and foraging
consumption is {Great, Small}, then artificial reef
distance should be {Major, Minor}�, where Major and
Minor reef distances are set within a 1-km2 area,
because it has been recommended that spacing artifi-
cial reefs 600–1000 m from natural reefs is best to
minimise fish interaction (Grove & Suno 1985). In
addition, Strelcheck et al. (2005) found that L. camp-
echanus growth rate and site fidelity were inversely
related to distance between artificial reefs off Alabama.
Thus, the first step in setting up the model was defining
the linguistic terms in the rule. First, the antecedent of
the rule required defining of High and Low maximum
Consumption (P-value, i.e. the realised percentage of
physiological maximum consumption), and Great and

Small Consumption (g) from foraging behaviour. The
consequent of the rule relied on Maximum and
Minimum reef distances.

Growth rates observed at Alabama reefs were used in
the bioenergetics model to estimate P-values and the
realised weight of food consumed, i.e. consumption (g),
for L. campechanus. From the data in Table 6, the
average P-value across the age classes determined from
bioenergetics modelling was 0.78 ± 0.07, and mean
total consumption was 16 524.5 ± 10 514.5 g yr)1

(Table 6). Four scenarios were conducted with the
bioenergetics model to determine reasonable percent
maximum consumption and foraging consumption
estimates indicative of an acceptable range of values
per age group (Table 7). Start and end weights for each
run varied depending upon combinations of four
measures: the lowest recorded size within an age group,
the average weight of the age group, the largest recorded
weight of the age group and the average weight of the
subsequent age group. First, the lowest recorded size at
age (cm) was converted to weight (kg) (Patterson et al.
2001a) for an age class and used as the start weight, with
the average weight of that age for the end weight. The
second run used lowest recorded weight as the start
weight, but used the largest recorded weight for that age
class (Patterson et al. 2001a) for the end weight. A third
run used the average weight of that age class as the start
weight and the largest recorded weight for the end
weight. Finally, a fourth run used the average weight for
the age class as the start weight and the average weight
for the subsequent age class as the end weight. From
these runs, the maximum and minimum P-values and
consumption values were determined for each L. camp-
echanus age group from age 2 through age10+. Any P-
value, and its corresponding consumption value, >1.1
was discarded as an outlier and thus not statistically
usable (Table 7).

The maximum and minimum P-values and con-
sumption (g) per age group from the four runs were
used to define triangular distributions typical of fuzzy
set-based logic. Crystal Ball (Crystal Ball is a product
of Decisioneering Software; http://www.decisioneer-
ing.com) was used to simulate the triangularly defined
distributions through 10 000 runs with input values of
maximum, minimum and most probably as generated
from the four scenarios. For each age category, the
Maximum function was defined to be triangular with
minimum P-value, but the likeliest was the maximum
P-value which anchored the distribution around the
maximum P-values observed. The Minimum function
was generated from the minimum P-value and the
maximum P-value where the likeliest was selected to be
the minimum P-value. In a similar manner, consump-
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tion for each age class was defined as a triangular
function from minimum to maximum with the likeliest
value selected based on which type of triangular
function was being defined. The values simulated for
the Maximum and Minimum fuzzy set type triangular
distributions provided expected P-values and con-
sumption for each age group that defined the linguistic
variables (Table 8).

Actual reef distances were not assumed to be
constant for any age group but instead, values were
randomly generated [0.01,1] km for each of the age
categories through 10 000 simulation runs with Crys-
tal Ball. Reef distances to represent Major (M) and
Minor (N) were also generated through10 000 runs
using Crystal Ball simulation software setting up
triangular functions with a minimum of 0.01 km,
maximum of 1.00 km, and the likeliest set at 0.50 km
(Table 8).

Artificial reef placement distances were allowed to
vary to test the optimal location; i.e. those repre-
sented by highest certainty and/or possibility of the
rules. Nine scenarios were tested for reef distances
from 0.01–0.50 to 0.50–0.95 km under the assump-
tions for Maximum and Minimum consumption at
the reef (P-values) simulated as described previously
using the bioenergetics modelling results for each age
group.

Belief in L. campechanus realised consumption at the
reef (P-value) as High or Low, and food consumed (g)
as Great or Small was determined. Certainty of the
rules was calculated, again based on the 10 000
simulation runs for each designated reef distance. As
certainty of any rule approached 100%, the minimum
of the range was set (0.50 km) and the maximum was
allowed to increase incrementally to 0.95 km.

Instead of using the subjective belief derived from
expert opinions, belief was set as the degree of
membership of the P-values and consumption gener-
ated from the bioenergetics modelling to the linguistic
variables in the rule antecedent calculated as the ratio
of the value to the simulated range of [Maximum,
Minimum] for each age class. From Table 8, for
example, Age 2 L. campechanus P-value of 0.8691
surpasses the simulated maximum of the range (i.e.
0.8691/0.8504 = 1.02), so belief in 1.00 that Age 2
L. campechanus has High maximum percent consump-
tion at the reef (membership cannot be >100%). The
ratio of the simulated minimum of 0.8317 to the Age 2
P-value (0.8317/0.8504) determines its membership in
Low as 0.96. Therefore, the membership function for
Age 2 is:

P � valueAge2 ¼ 1:00=Highþ 0:96=Low

and based on 4253.9 g of consumption at Age 2, for
the defined range of [3517.6, 2781.4] of 4253.9/3517.6
and 2781.4/4253.9, respectively, determines:

ConsumptionAge2 ¼ 1:00=Greatþ 0:65=Small

again setting the simulated value for Great member-
ship to 1.00 membership.

Table 7. Four scenario runs to determine minimum and maximum

P-values and consumption (g)

Age

Start

weight (g)*

Final

weight (g)*

Run

P-value�
Consumption

(g)�

2 133.86 416.60 0.8329 2045.1

133.86 829.42 0.8691 4253.9

416.60 829.42 0.8130 3736.4

Avg (2:3) 416.60 916.20 0.8691 4253.9

3 333.21 916.20 0.7781 3503.1

333.21 2999.06

916.20 2999.06 1.0206 10 340.2

Avg (3:4) 916.20 1738.80 0.7316 5934.4

4 675.97 1738.80 0.8513 6210.9

675.97 4888.85

1738.80 4888.85 1.0656 16 034.9

Avg (4:5) 1738.80 2717.50 0.7306 8581.3

5 829.42 2717.50 1.0121 9534.7

829.42 7465.20

2717.50 7465.20

Avg (5:6) 2717.50 3854.20 0.7299 11 403.1

6 1430.90 3854.20 1.0285 13 153.2

1430.90 9046.98

3854.20 9046.98

Avg (6:7) 3854.20 5102.70 0.7499 14 677.3

7 1682.60 5102.70

1682.60 9046.98

5102.70 9046.98 0.9605 25 910.2

Avg (7:8) 5102.70 6420.10 0.7265 17 111.5

8 4888.85 6420.10 0.7504 17 415.4

4888.85 9046.98 0.9862 26 245.6

6420.10 9046.98 0.8280 24 072.5

Avg (8:9) 6420.10 7768.70 0.7236 19 836.7

9 6420.10* 7768.70 0.7724 19 804.8

6420.10 10 844.13 0.9613 30 037.9

7768.70 10 844.13 0.8434 28 057.1

Avg (9:10+) 7768.70 12 121.20 0.9292 32 296.4

10+ 9046.98 12 121.20 0.8074 29 554.4

9046.98 12 871.52 0.8537 31 989.9

12 121.20 12 871.52 0.6592 27 323.2

Avg (10+:15) 12 121.20 15 161.10 0.7856 34 628.6

*Weight calculation from Patterson et al. (2001a) length at age figure

yielded a minimum value for Age 9 Lutjanus campechanus (Poey)

equivalent to maximum value for Age 8 L. campechanus. Therefore,

the average value for Age 8 L. campechanus was used as the mini-

mum value for Age 9 L. campechanus. �P-values > 1.1 were deter-

mined to be statistical outliers and with corresponding Consumption

(g) were stricken from the data set.
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In a similar manner, the membership functions were
generated for all age groups (Table 9).

Next, the belief in the degree of membership was
similarly accepted to be the ratio of the randomly
generated distance for an age group in relation to the
Maximum and Minimum reef distance based on the
defined triangular distribution. Again, from Table 8
for Age 2 L. campechanus, the randomly generated
reef distance of 0.95 exceeds the Maximum simulated
reef distance value(i.e. has membership of 1) but
the Minimum is only partially that of the reef
distance designated for that age L. campechanus.
Membership functions for Age 2 and all other ages
of L. campechanus according to reef distances are
given in Table 10.

Each linguistic variable was then defined from the
membership functions in Table 10. Given previous
research on reef spacing (Grove & Suno 1985; Strel-
check et al. 2005), and concentrating within a 1-km2

area, the focus was on defining the Major (M) distance,
not Minor (N). Therefore, Major distances (0.50 km

apart) between reefs as a function of Age of
L. campechanus is:

M ¼ 1:00=Age2þ 0:68=Age3þ 1:00=Age4

þ 1:00=Age5þ 1:00=Age6þ 0:49=Age7

þ 0:91=Age8þ 1:00=Age9þ 1:00=Age10þ:

Membership of High and Low P-value and Great
and Small consumption (g) according to the age of
L. campechanus is as follows:

H ¼ 1:00=Age2þ 0:79=Age3þ 0:77=Age4

þ 0:80=Age5þ 0:80=Age6þ 0:82=Age7

þ 0:81=Age8þ 1:00=Age9þ 1:00=Age10þ:
L ¼ 0:96=Age2þ 1:00=Age3þ 1:00=Age4

þ 1:00=Age5þ 1:00=Age6þ 1:00=Age7

þ 1:00=Age8þ 0:90=Age9þ 0:92=Age10þ:

Table 8. P-value, consumption and reef distance values with their corresponding fuzzy set-based simulated minimums and maximums*

Age

P-Value

(% of max

consumption) Max. Min.

High

(H)

Low

(L)

Consumption

(g) Max. Min.

Great

(G)

Small

(S)

Reef

distance (km) Max. Min.

Major

(M)

Minor

(N)

2 0.8691 0.8504 0.8317 1.02 0.96 4253.9 3517.6 2781.4 1.21 0.65 0.95 0.50333 0.503 1.89 0.53

3 0.7316 0.9243 0.8279 0.79 1.13 5934.4 8061.2 5782.1 0.74 0.97 0.34 0.50333 0.503 0.68 1.48

4 0.7306 0.9539 0.8423 0.77 1.15 8581.3 12 760.2 9485.6 0.67 1.11 0.66 0.50333 0.503 1.30 0.77

5 0.7299 0.9180 0.8240 0.80 1.13 11 403.1 19 031.4 14 283.1 0.60 1.25 0.80 0.50333 0.503 1.59 0.63

6 0.7499 0.9356 0.8428 0.80 1.12 14 677.3 23 252.2 18 202.7 0.63 1.24 0.89 0.50333 0.503 1.77 0.57

7 0.7265 0.8825 0.8045 0.82 1.11 17 111.5 22 945.9 19 981.7 0.75 1.17 0.25 0.50333 0.503 0.49 2.02

8 0.7236 0.8987 0.8111 0.81 1.12 19 836.7 23 302.2 20 358.8 0.85 1.03 0.46 0.50333 0.503 0.91 1.10

9 0.9292 0.8983 0.8354 1.03 0.90 32 296.4 28 132.5 23 968.7 1.15 0.74 0.81 0.50333 0.503 1.60 0.62

10+ 0.7856 0.7889 0.7240 1.00 0.92 34 628.6 32 193.5 29 758.3 1.08 0.86 0.75 0.50333 0.503 1.49 0.67

*This table reflects the results from the simulations as recorded. For the purposes of determining degree of belief in membership, any simulated

value >1.00 (100% belief) was set to 1.00 (see Table 9).

Table 9. Consumption membership functions for Lutjanus camp-

echanus (Poey) by age category

Age

Membership for max %

consumption at the reef

Membership for

foraging consumption

2 1.00/High + 0.96/Low 1.00/Great + 0.65/Small

3 0.79/High + 1.00/Low 0.74/Great + 0.97/Small

4 0.77/High + 1.00/Low 0.67/Great + 1.00/Small

5 0.80/High + 1.00/Low 0.60/Great + 1.00/Small

6 0.80/High + 1.00/Low 0.63/Great + 1.00/Small

7 0.82/High + 1.00/Low 0.75/Great + 1.00/Small

8 0.81/High + 1.00/Low 0.85/Great + 1.00/Small

9 1.00/High + 0.90/Low 1.00/Great + 0.74/Small

10+ 1.00/High + 0.92/Low 1.00/Great + 0.86/Small

Table 10. Reef distance membership functions for each age class

from Crystal Ball simulations

Age

Membership of reef

location to major and

minor distances

2 1.00/Major + 0.53/Minor

3 0.68/Major + 1.00/Minor

4 1.00/Major + 0.77/Minor

5 1.00/Major + 0.63/Minor

6 1.00/Major + 0.57/Minor

7 0.49/Major + 1.00/Minor

8 0.91/Major + 1.00/Minor

9 1.00/Major + 0.62/Minor

10+ 1.00/Major + 0.67/Minor
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G ¼ 1:00=Age2þ 0:74=Age3þ 0:67=Age4

þ 0:60=Age5þ 0:63=Age6þ 0:75=Age7

þ 0:85=Age8þ 1:00=Age9þ 1:00=Age10þ:
S ¼ 0:65=Age2þ 0:97=Age3þ 1:00=Age4

þ 1:00=Age5þ 1:00=Age6þ 1:00=Age7

þ 1:00=Age8þ 0:74=Age9þ 0:86=Age10þ:

Results

The triangular functions that were defined for each age
for P-value, consumption (g) and reef distance (km)
were set as assumptions with results generated as I and
J functions based on a series of simulation runs as
described previously. From Eqn (8)

IðA � BÞ ¼ inf
x
Maxf1�AðxÞ; BðxÞg:

As such, the complements and the reef distance
functions determine, for each age category, the max-
imum belief in the subset relationship of {High, Low}
P-value, {Great, Small} consumption (g) value and
combinations of both parameters to reef distance.
Continuing the example, based on the simulated

values in Table 8, for Age 2 L. campechanus with total
belief, 1.00 membership, in High percent maximum
consumption at the reef, the complement (1 ) H)
would be 0, and the beliefs in the subset relationship to
Major reef distance (HM) would be {0, 1.00} with
maximum belief = 1.00. Then, the value of I (HM) is
the minimum belief over all values for ages 2 through
10+; 0.49 which occurs at the randomly generated reef
distances of 0.25 km for age 7. Then, the minimum set
for which the function I (HM) measures the degree to
which the P-value (percent maximum consumption) is
included (i.e. a factor) in Major reef distance
(0.503 km) has belief of 0.49. All other I functions
for Major (M) reef distance are calculated in this same
manner such that:

IðH � MÞ ¼ 0:49 IðH \ G � MÞ ¼ 0:74

IðL � MÞ ¼ 0:49 IðH \ S � MÞ ¼ 0:79

IðG � MÞ ¼ 0:49 IðL \ G � MÞ ¼ 0:74

IðS � MÞ ¼ 0:49 IðL \ S � MÞ ¼ 0:97

From Eqn (9), J(A#B) measures the degree to which
A intersects B

JðA#BÞ ¼MaxMin
x

fAðxÞ;BðxÞg:

Again using the continuing example at Age 2,P-value
belief is 1.00 in High, and belief is 0.96 in Major reef
distance so that Min{1.00, 0.96} is 0.96 for J(H#M) or

0.96 belief that High maximum consumption at the reef
for this category intersects withMajor reef distance. The
actual J(H#M) is calculated as themaximumbelief from
the minimum observed at each category. This value for
J(H#M) is 1.00which is observed forAges 2, 9 and 10+.
This represents 100% belief that if percent maximum
consumption is High at the reef then the reef distances
are Major (0.503 km). For the data in Table 8, again
restricting maximum belief to 1, the degree to which the
fuzzy sets for P-value and consumption (food con-
sumed) intersect M are:

JðH#MÞ ¼ 1:00 JðH \ G#MÞ ¼ 1:00

JðL#MÞ ¼ 1:00 JðH \ S#MÞ ¼ 0:86

JðG#MÞ ¼ 1:00 JðL \ G#MÞ ¼ 0:96

JðS#MÞ ¼ 1:00 JðL \ S#MÞ ¼ 1:00:

Therefore, for the above I and J functions deter-
mined from the 10 000 simulation runs in Table 8, the
following certain and possible rules, respectively, can
be written based upon a designated threshold of
acceptance, a.

With a threshold of a = 0.95, a certain rule for
major reef distance is:
1. If realised consumption at the reef (P-value) is Low
and food consumed (g) is Small, then reef distance
should be Major (0.5033). (Certain with Belief = 0.97)
At a = 0.75, a certain rule for major reef distance is:

2. If realised consumption at the reef (P-value) is High
and food consumed (g) is Small then reef distance
should be Major (0.5033). (Certain with Belief = 0.79)

Two other rules of lesser certainty are:
3. If realised consumption at the reef (P-value) is High
and food consumed (g) is Great then reef distance
should be Major (0.5033). (Certain with Belief = 0.74)
4. If realised consumption at the reef (P-value) is Low
and food consumed (g) is Great then reef distance
should be Major (0.5033). (Certain with Belief = 0.74)

With a = 0.95, seven of the eight rules show strong
belief in the possibility that reef distance should be
0.503 km.

The above results relate only to one series of
simulated data given in Table 8. Based on the nine
scenarios tested for reef distances from 0.01–0.50 km,
to 0.50–0.95 km under the assumptions for Maximum
and Minimum consumption at the reef (P-values)
simulated as described previously using the bioener-
getics modelling results for each age group and again
based on the 10 000 simulation runs for each desig-
nated reef distance, the following was observed:

Certain rules: (a ‡ 0.94)
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1. If realised consumption at the reef (P-value) is High,
then reef distances should be 0.25–0.95 km. (Be-
lief = 1.00)
2. If realised consumption at the reef (P-value) is Low,
then reef distances should be 0.25–0.95 km. (Be-
lief = 1.00)
3. If food consumed is Great, then reef distances
should be 0.25–0.95 km. (Belief = 1.00)
4. If food consumed is Small, then reef distances
should be 0.25–0.95 km. (Belief = 1.00)
5. If realised consumption at the reef (P-value) is High
and food consumed (g) is Great, then reef distances
should be 0.25–0.95 km. (Belief = 1.00)
6. If realised consumption at the reef (P-value) is High
and food consumed (g) is Small, then reef distances
should be 0.25–0.95 km. (Belief = 1.00)
7. If realised consumption at the reef (P-value) is Low
and food consumed (g) is Great, then reef distances
should be 0.25–0.95 km. (Belief = 1.00)

All of the above rules had strongest belief in reef
distances >0.25 km apart. However, more refinement
of distances but with lower belief was observed by the
following:
8. If realised consumption at the reef (P-value) is Low
and food consumed (g) is Small, then reef distances
should be 0.50–0.95 km. (Belief = 0.985)
9. If realised consumption at the reef (P-value) is Low
and food consumed (g) is Small, then reef distances
should be 0.50–0.85 km. (Belief = 0.947)

Possible rules: (a ‡ 0.95)
All rules are possible for reef distances 0.01–0.50;

0.25–0.50; 0.35–0.50; and 0.45–0.50 and 0.50–
0.95 km.

Discussion

The process of collecting data for evaluating bioener-
getics models was considered difficult 20 years ago
(Hewett & Johnson 1992). Supporting evidence, how-
ever, establishes that data sets for bioenergetics models
can be developed if knowledge of observed growth
rates, daily consumption levels, temperatures, and
reasonable values of activity cost and caloric density
for fish and their prey are available (Bajer et al. 2004b).
The L. campechanus parameter values for age classes
in this model were determined from data derived from
tagging studies, diet analyses, site fidelity estimations
and reproductive history (Patterson et al. 2001a, b;
Strelcheck 2001; McCawley 2003; Woods 2003; Jack-
son et al. 2007; McCawley & Cowan 2007). Thus, the
model provides an approximation of bioenergetics of
and prey demand for L. campechanus based upon
empirical data.

Combined results from multiple sources were used to
provide age-specific predicted growth, consumption and
respiration rates along with an estimate of total
consumption for a single reef population, and thus the
amount of prey required to sustain the population. The
use of the Wisconsin Bioenergetics software to create a
L. campechanus bioenergetics model provided a view
into the dynamics within the snapper population on
the reef systems (see Shipley 2008 for a complete
description of theL. campechanus bioenergetics model).

The bioenergetics parameters when inputted into the
fuzzy rule-based model showed that High consumption
at the reef (P-value) with Great or Small foraging
consumption (g) does not overly influence reef place-
ment. Similarly, Low P-value and Great consumption
(g) do not overly influence reef placement. The
minimum distance that received perfect (100% belief)
strength for any parameter or combination of param-
eters was reef placement of no closer than 0.25 km.
However, with slightly lesser strength, Low consump-
tion at the reef (P-value) and Small foraging con-
sumption (g) placed reef distances at a minimum of
0.50 km with sufficient belief in the certainty of this
relationship (belief of 0.985).

The high belief in the possibility of all parameters
tested for each of nine distance scenarios supports that
consumption at the reef {High, Low} and foraging
consumption {Great, Small} appear to relate equally
as possible influences upon reef distances from 0.01 to
0.95 km. However, the overriding factors in reef
placement are Low consumption at the reef (P-value)
and Small foraging consumption (g) which suggest that
reef placement should be no closer than 0.50 km,
preferably 0.50–0.95 km (belief = 98.5). The possibil-
ity results with perfect belief (1.00) for each range show
that the two factors have a strong degree of relation-
ship to reef locations. Therefore, the results of the
fuzzy rough set modelling provide evidence that reef
locations should be between 0.50 and 0.95 km, such
that no more than two fit within a 1-km2 area.

More than 20 years ago, Bohnsack (1989) sug-
gested that it is likely that prey demand necessary to
support observed fish biomasses on individual artifi-
cial reefs is high and cannot be equated with local
prey production. Fish production may be dependent
upon some critical density of artificial reefs (also see
papers in Fisheries, April 1997), or at the very least,
dependent upon fish movement off, or perhaps
between, nearby reefs during foraging. Thus, deter-
mination of the effects of: (1) artificial reef size; (2)
the spatial arrangement and density of artificial
structures; and (3) proximity to natural habitats on
the demographics of reef-associated fishes are neces-
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sary steps in addressing the relative value of artificial
reefs as fish habitat. As early as 1998, Bortone
reiterated that �artificial reef location studies – as well
as analyses of the impacts that large-scale environ-
mental conditions have on the locally attracted fish
assemblages – are long overdue�.
This research approaches the solution to artificial

reef placement from the perspective of energetics. Fish
gain energy through food; this energy is used for
metabolic activities and growth (Adams & Breck
1990). If sufficient energy to promote reef fish popu-
lation growth (in weight) in excess of losses of biomass
due to mortality is available on an artificial reef, then
the reef will produce new fish biomass (Ricker 1975).
However, artificial reefs in the northern Gulf of
Mexico are most probably energy sinks (Bortone
1998). Most of the trophic energy that comes to any
reef is derived from the water column that passes by, or
from the substrate on which the reef sits. Thus, the
carrying capacity of a reef depends upon the amount of
energy delivered as food items in the water column,
and in the form of food captured from the surrounding
benthic substrate (Bortone 1998). Depending upon reef
size and the number of individuals present, McCawley
and Cowan (2007) estimated that L. campechanus
alone could consume 82–975 kg of prey per year on
Alabama artificial reefs assuming a consumption/
biomass ratio of 1.44 (FishBase; http://fishbase.org/
Summary/SpeciesSummary.php?ID=1423), with only
a small fraction (1.3%) of the prey species consumed
being derived directly from the reef. Rather, most of
the prey consumed was gathered from the surrounding
soft bottom sediments. The bionergetically derived
consumption results for a L. campechanus population
on a single reef in the Alabama shelf waters were less
(16–26 kg yr)1) than estimates by McCawley and
Cowan (2007), undoubtedly owing to the latter�s
failure to account for size structure. As such, it seems
likely that fish foraging dynamics on artificial reefs
may be governed by resource mosaic dynamics as
described by Lindberg et al. (1990) for stone crabs.
The determination of a bioenergetics based on

environmental factors and a synthesis of field research
with a fuzzy set-based model may prove useful for
future management practices and builds on the concept
that predicting how management actions can influence
an ecosystem requires simulation modelling; a classic
use of ecosystems models (Minns 1992) whether from
the perspective of a crisp or fuzzy research focus. A
benefit of the fuzzy rule-based model presented herein
is that while the technical data were derived by
bioenergetics modelling or obtained through field
research, once available, simulation and subsequent

analysis of the membership functions do not require
extensive technical knowledge of the decision maker.
Indeed, as a spreadsheet applicable modelling process,
management decisions can be made in the field. Using
a readily available simulation package that works with
Excel, the simulations were easily conducted on a
laptop computer. The model can be readily updated as
necessary to react to Sakuramoto�s (1995) suggestion
that refinement of the rules is always a consideration,
and accumulation of sufficient data upon which to base
the simulation of distributions of ecological variables
should be ongoing. The model is, therefore, applicable
to other fisheries management decisions for species
other than L. campechanus. The results, likewise, have
relevance to the discussion of artificial reef placement
in bodies of water outside of the Alabama shelf region
of the Gulf of Mexico.
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